HASHKFK
BETHASH官方网站(访问: hash.cyou 领取999USDT)
过去两年,大语言模型和生成式AI的风头过盛,导致“传统AI”难以在市场中获得更高热度和更多关注。所谓“传统AI”包括了预测型AI和解释型AI:预测型AI即基于历史数据对未来趋势进行预测,典型的场景包括风险预测和金融欺诈侦测;解释型AI则增强了人类的高阶任务能力,包括了图像与声音识别等,典型的场景包括癌症筛查等。Shukri Dabaghi强调,2024年以来三大AI技术领域都获得了均衡的投资,说明市场正在回归理性。
在过去两年,确实出现了“小模型”AI的预算被大模型和生成式AI“分食”的现象。很多企业将原本打算投向“小模型”AI的预算,特别是解释型AI的预算,转投向大模型和生成式AI。IDC报告显示,企业IT预算从解释型AI向生成式AI转移的现象,在显著地发生。但Shukri Dabaghi认为,一方面生成式AI还难以产生切实的商业价值,另一方面生成式AI需要消耗极大的能源,造成很多地区难以大规模应用生成式AI,从而造成了对生成式AI的期望回归理性。
对于中国企业来说,不论是AI领导者还是AI跟随者,都需要一个稳健和与时俱进的数据和AI平台。SAS大中华区首席数据科学家马宁博士强调,在当今数据驱动的时代,数据管理已经成为了企业成功的关键。随着三大AI技术的兴起,数据的采集、处理、存储和分析变得尤为重要,尤其是在金融、医疗和制造业等关键领域。在这些领域中,数据不仅需要被有效地管理,以确保安全性和合规性,还需要被转化为有价值的洞察,从而推动业务决策和创新。
多年来,SAS软件平台一直持续演进,全面支持企业在数据、分析、AI与生成式AI等方面的需求。在生成式AI大趋势下,SAS也与时俱进推出了相应的产品策略。例如,SAS Viya即将推出Copilot,可以将自然语言“翻译”为SAS代码,在极大提升用户生产力的同时,将数据、分析和AI技能固化到Copilot中,减轻人才技能培养的压力。而SAS Viya也支持多种商用以及开源的大语言模型,SAS团队也在各行业场景中打磨大模型方案,将行业方案与大模型深度集成,切实为行业提高生产力。